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Abstract. The application of educational data mining (EDM) techniques to interactive 
learning software is increasingly being used to broaden the range of constructs 
typically incorporated in student models, moving from traditional assessment of 
student knowledge to the assessment of engagement, affect, strategy, and 
metacognition. Researchers are also broadening the range of environments within 
which these constructs are assessed.  In this study, we develop sensor-free affect 
detection for EcoMUVE, an immersive multi-user virtual environment that teaches 
middle-school students about casualty in ecosystems. In this study, models were 
constructed for five different educationally-relevant affective states (boredom, 
confusion, delight, engaged concentration, and frustration). Such models allow us to 
examine the behaviors most closely associated with particular affective states, paving 
the way for the design of adaptive personalization to improve engagement and 
learning. 
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1 Introduction 
 
Researchers are increasingly interested in automated affect detection within 
educational software [cf. 8], which can be used both to drive automated intervention 
[3,16] and to conduct basic research on affect and learning [13,18]. One popular 
approach in affect detection within educational software is to leverage physical 
sensors of various sorts, including visual images obtained through webcams posture 
sensors, and electroencephalograms [1, 21, 29, 30]. Detectors built using physical 
sensors have typically been successful at identifying student affect in laboratory 
settings [12], but in classrooms as well [2]. One limitation of physical sensors in 
education research, however, is that they can be both costly and fragile. Combined 
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with bandwidth restrictions, these issues can reduce the practicality of real-time 
sensor-based detection, especially in school environments.  

Consequently, many researchers are now working towards sensor-free affect 
detection [see 6, 11, 17, 22, 26]. The quality of detectors developed in this fashion has 
now reached a point where detector agreement with expert field coders is about half 
as good as inter-rater agreement between human experts [cf. 6, 22]. Furthermore, 
sensor-free detectors of student affect have been able to predict standardized measures 
of student learning [22] and even which students will choose to attend college several 
years later [27]. Many of the sensor-free affect detectors developed have been 
developed for intelligent tutoring systems [6, 12, 17, 22]. 

In this paper, we build detectors that can infer a range of student affective states 
within the context of a multi-user virtual environments (MUVE), a computer-based 
learning program where each student controls an avatar who moves through a virtual 
world in a more autonomous fashion, interacting with non-player characters and 
objects in order to solve puzzles and learn educational content [15]. Affect detection 
has been developed previously for one MUVE, Crystal Island [26]. Their model was 
developed from a combination of baseline data obtained from a series of 
questionnaires and data from student interactions with the MUVE. The present study 
builds on this pioneering work, developing a sensor-free affect detector for 
EcoMUVE without using baseline questionnaires. 

 
2 Data  

 
The data analyzed were collected from 153 students studying with two teachers at a 
suburban middle school in the Northeastern United States. Students were 
predominantly White and Asian-American, with small numbers of Latino and 
African-American students. Only 1% was eligible for the free/reduced-price lunch 
program, considerably below the national average.   

Students in this study were using EcoMUVE, a computer-based curriculum 
designed to teach about ecosystems. This 3D virtual world simulates real-life 
ecological environments, allowing students to develop an understanding of the 
complex interrelationships characteristic of ecosystems by maneuvering avatars 
throughout pond (module 1) and forest (module 2) ecosystems like that shown in 
Figure 1 [19]. Each 2-week module allows students to explore the simulated 
ecosystem over a number of virtual days, providing opportunities to observe 
interactions among ecological components (e.g., water, algae, fish) and the impact of 
human development on these multifaceted relationships. One module, for example, 
introduces a pond environment negatively affected by the nearby development of 
human infrastructure. Through investigation of the ecosystem (e.g., measuring 
bacterial composition of the pond, interviewing residents), students uncover causes of 
observed changes—in this instance, fertilizer runoff from an adjacent golf course and 
housing development is producing an algal bloom [19]. 
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the one currently being observed. They record the first affective state they observe but 
have up to 20 seconds to make their observation.  

In this study, seven affective states were recorded: boredom, engaged 
concentration (the affective  state associated with flow – cf. [7]), confusion, delight, 
disgust, frustration, and sorrow. The categories were selected based on several 
criteria, including evidence about prevalent categories from previous learning 
research [7, 10], evidence about the prevalence of delight in games [24], qualitative 
reports from teachers and EcoMUVE developers, and discoveries made during a pilot 
study. Affective states which did not fit these categories and observations which 
occurred when a student could not otherwise be coded (e.g. if the student left the 
room or the teacher paused EcoMUVE activity for lecture), were coded with a “?”.  

Students were observed over the course of up to three class days (one class period 
per day). Observations for which a “?” was recorded or that occurred when the student 
was logged out of EcoMUVE were excluded, resulting in 2187 observations across all 
students and an average of 14.29 observations per student (SD = 5.35). 

Within the field observations, the most common affective state was engaged 
concentration (67%). The remaining affective states were far less frequent. Delight 
was observed 7.1% of the time (much higher than typically seen in intelligent tutors), 
and confusion was recorded in 3.1% of the observations.  Frustration (0.9%), boredom 
(0.5%), disgust (0.4%) and sorrow (0.1%) accounted for less than 2% of the data 
combined. The remaining 20.9% of the observations were labeled with the “?” that 
BROMP coders use when another affective state is being presented, when a student’s 
affective state is ambiguous, or when the student otherwise cannot be observed. In 
this study, many of these cases involved the teachers pausing EcoMUVE activity for 
lecture or asking students to get out of their seats for group activities.  

 
3.2. Creation of Affect Models 
Log file data was synchronized with BROMP data, so that each 20-second period 
preceding the entry of an observation (termed a clip) was tagged with the 
corresponding affect and behavior labels. Models were constructed at the clip level 
for the five most common affective states (boredom, confusion, delight, engaged 
concentration, and frustration).   

Features were distilled from available information within EcoMUVE’s log files. 
As in previous research of affect and other educationally relevant constructs, features 
included specific descriptions of individual actions (e.g. picking up a particular 
object), classification of different actions by types (e.g. picking up similar objects), 
information about whether or not an action was novel or repetitive, and temporal 
information. As with previous investigations of virtual environments, they also 
included information about EcoMUVE’s virtual locations (e.g. whether an action was 
completed in the submarine or near the pond) and interactions between students. 

Attempts were made to fit each detector using six common classification 



 

 

algorithms (i.e., K* JRip, J48, REPTree, Bayesian Logistic Regression, and Linear 
Regression), which are representative of a variety of different patterns but are less 
susceptible to over-fitting than many other algorithms.  

Features for machine learning algorithms were chosen using forward selection, an 
iterative process in which features are added individually. At each iteration, the 
feature that most improves model goodness is added; this process continues until 
model performance no longer improves. In this study, cross-validated Cohen’s (1960) 
Kappa, which scales from -1 to 1, was used as the goodness metric during feature 
selection. Features that performed below chance in single-feature models (Kappa 
൑ 0ሻ were excluded prior to this process in order to reduce the chance of over-fitting. 

Detectors were evaluated at the student level using 5-fold cross-validation (e.g. 
detectors were trained on data from four student groups and tested on data from a 
fifth). In addition, students were stratified into fold assignments based on their 
training labels, guaranteeing a representative number of majority and minority class 
observations in each fold. After the creation of each fold, an alternate version of each 
training fold was created through resampling so that an equal number of examples 
where the construct was present or absent occurred in each fold. In this process, clips 
that contain the construct being detected were duplicated in order to artificially 
increase that construct’s frequency within the training set. However, in order to ensure 
validity, model performance was always tested on data that had not been resampled. 

In addition to Cohen’s Kappa, which was also applied during the forward 
selection process, A' was used to assess final detector performance and select the 
optimum algorithm for each detector. A' scales from 0 to 1 (chance = 0.5) and 
assesses the probability that the detector will correctly identify whether a specific 
affective state is present or absent in a specific clip. A' is equivalent to W, the 
Wilcoxon statistic, and closely approximates the area under the Receiver-Operating 
Curve [14]. Because current implementations of AUC ROC available in data mining 
and statistics packages over-estimate goodness for the special case where multiple 
data points have the same confidence, A’ was calculated using software available at 
http://www.columbia.edu/~rsb2162/computeAPrime.zip.  
 
 

4 Results 
 
Each of the five detectors constructed for EcoMUVE performed better than chance 
under cross-validation. In particular, Kappa values for these models were generally 
comparable to values seen for sensor-free affect detection in recent papers [e.g. 6, 22, 
26], but A’ was somewhat lower than the values seen in [22].  

The best detector of Boredom used JRip, and achieved a Kappa of 0.31 and an A’ 
of 0.65. It relied upon five features: (1) a normalized metric of student speed based on 
a calculation called TimeSDtype (see below), (2) the largest amount of time between 
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two actions in a clip, (3) the number of zoom changes within the submarine, (4) the 
number of times the student has viewed the data he or she has collected, and (5) and 
the number of player actions in the clip.   
 
Table 1:  Features used in boredom detector 
 

Boredom 

B1 Across the last 5 actions, the sum of TimeSDType. For each student action, 
TimeSDType is the  degree to which the current student action is faster or 
slower than the average action by all students involving the same type of 
action (e.g. air temperature measurements or entering the submarine), in 
standard deviations faster (-) or slower (+) than the average.   

B2 The largest amount of time between two actions during the clip (not 
considering whether or not the student logged out between actions). 

B3 The total number of zoom changes within the submarine so far. 

B4 The total number of times the student used the view data application so far. 

B5 The number of student actions in the clip. 

 
The best detector of Confusion used J48 and achieved a Kappa of 0.23 and an A’ 

of 0.60. It relied upon five features: (1) the ratio between the number of times the 
student has viewed his or her data and taken measurements, (2) the number of times 
the student has repeated the same measurement in the current zone, (3) the total 
number of measures that the student has taken so far, (4) the average number of 
characters in each text chat, and (5) the number of player actions in the clip. 
 
Table 2:  Features used in confusion detector 
 

Confusion 

C1 The ratio between the number of times the student viewed data up until the 
current action, and the number of times the student took measurements up 
until the current action. 

C2 The number of times the student has repeated the same measurement in the 
current zone so far. 

C3 The total number of measures that the student has taken so far. 

C4 The average number of characters in each text chat the player engaged in 
during the clip. (Actions other than chats are counted as 0 characters). 

C5 The number of student actions in the clip. 

 
The best detector of Delight used Bayesian Logistic Regression, achieving a 

Kappa of 0.19 and an A’ of 0.62. It relied upon six features: (1) the number of student 
actions involving plants, (2) the percentage of photos not followed by accessing the 
relevant species page, (3) a largest number of measures that the student has taken per 



 

 

trip to each zone, (4) the ratio between the amount of time spent in the submarine and 
the number of measures taken in it, and (5) the largest value of the second feature in 
this model, and (5) the number of student actions in the clip.  

 
Table 3:  Features used in delight detector 
 

Delight 

D1 The total number of student actions involving plants so far. 

D2 The percentage of photographs a student takes without immediately 
accessing the relevant species page.  

D3 The number of measurements taken per student trip to each zones so far. 
Then the largest value of this feature at any point in the clip is taken. 

D4 The ratio between the amount of time spent in the submarine and the number 
of measurements taken in the submarine 

D5 The percentage of photographs a student takes without immediately 
accessing the relevant species page. Then the largest value of this feature at 
any point in the clip is taken. 

D6 The number of student actions in the clip. 

 
The best detector of Engaged Concentration used J48, achieving a Kappa of 0.24 

and an A’ of 0.56. It relied upon seven features: (1) a normalized measure of how fast 
or slow student actions are based on their peers’ typical response time for the same 
kind of action, (2) the amount of time the student has spent using EcoMUVE during 
the real-world day, (3) the amount of time the student has spent interacting with 
NPCs, (4) the amount of time the student has interacted with plants, (5) another 
normalized measure of how fast or slow student actions are, (6) the number of photos 
taken in the real-world day, and (7) the number of student actions per clip. 
 
Table 4:  Features used in engaged concentration detector 
 

Engaged Concentration 

E1 Across the last 3 actions, the sum of TimeSDType. (See definition of 
TimeSDType in boredom detector features, Table 1.) 

E2 The total time the student spent using EcoMUVE so far in the real world 
day, as calculated from the beginning of the clip. 

E3 The total time spent by the player interacting with NPCs so far. 

E4 The total amount of time spent by the player interacting with plants. 
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E5 Across the last 5 actions, the sum of TimeSDObjectType. For each student 
action, TimeSDObjectType is the degree to which the current player action 
is faster or slower than the average action by allstudent involving the same 
type of action, but only for actions involving interaction with an 
object/animal/plant (e.g. taking a photo of an animal), in standard deviations 
faster (-) or slower (+) than the average. Then, the largest value of this 
feature  at any point in the clip is taken. 

E6 The total photographs taken in the current, real-world day so far. 

E7 The number of student actions in the clip. 

      
The best detector of Frustration used K*, achieving a Kappa of 0.27 and an A’ of 
0.65. It relied upon seven features: (1) the average amount of time the student has 
taken to read a species page, (2) the average time per measure in the submarine, (3) 
the smallest values of the second feature,  (4) the ratio between the time spent reading 
(for the first time) and rereading a species page, (5) the number of player actions in 
the clip, (6) the time spent in the submarine divided by the number of measurements 
taken during that time, and (7) the time per field guide access divided by the number 
of times a student has accessed a species page for the first time. 
 
Table 5:  Features used in frustration detector 
 
Frustration 

F1 The average amount of time a student takes to read a species page.  

F2 The average time per measurement taken in the submarine. 

F3 The average time per measurement taken in the submarine. Then the smallest 
value of this feature at any point in the clip is taken. 

F4 The ratio between the total time a student spent reading species pages and 
the number of times he or she re-reads a species page for the second or 
subsequent time.  

F5 The number of student actions in the clip. 

F6 Time spent in submarine (from enter submarine to next enter zone), divided 
by number of measurements taken from within submarine. 

F7 Time per field guide access (from opened to closed), divided by total number 
of species page accesses—but only for cases where student is accessing a 
species page for the first time.  

 
As can be seen, there were some key commonalities between the features utilized 

by the different models. Most notably, the number of actions that a student made 
within the 20-second clip being examined was included in the detector of every single 
construct. This feature gives some information about the speed with which students 
are working within the system. Temporal features were generally important, forming 



 

 

part of the model even beyond this feature for engaged concentration, frustration, and 
boredom. Student measurements played a prominent role for confusion and frustration 
– and also, somewhat surprisingly, for delight. In particular, repeating the same 
measurement was an indicator of confusion. Students who access the data without 
regard to the measurements they are taking are more likely to be bored, while those 
who are doing so frequently, though with more purpose, are more likely to be 
confused. Similarly, actions within the submarine were indicators of both positive and 
negative emotions (delight, frustration, and boredom). Students who took many 
photos, but who did not follow them up by reading the species page, were more likely 
to be delighted. Text chat with other students was an indicator of confusion, while 
interaction with the game’s non-player characters was an indicator of engaged 
concentration.  

 
5 Discussion and Conclusions 

 
In this paper, we present five sensor-free models of educationally-relevant 

affective states for the virtual environment, EcoMUVE, a multi-user virtual 
environment (MUVE) for learning about ecosystems.  In recent years, it has been 
demonstrated that affective models can be developed for a range of online learning 
environments. To our knowledge, this is the first paper demonstrating that sensor-free 
affect detectors can be developed for a MUVE without changing the student 
experience in any way. In the prior work on affect detection in MUVEs [26], 
questionnaire data was incorporated into the models, and the student experience was 
changed in order to develop models, with students completing pop-up surveys on their 
affect. We extend this pioneering work by developing models using non-intrusive 
BROMP field observations, and develop models that can make decisions using no 
data other than the unmodified interactions between the student and the learning 
system. 

In particular, we believe that our model of delight makes an important 
contribution to the nascent area of sensor-free, automated affect detection in online 
learning systems, since, to the best of our knowledge, this is the first time that a cross-
validated sensor-free model of this construct has performed above chance for the 
original data distribution. While delight is less common in the intelligent tutoring 
systems within which much of the work on sensor-free affect has taken place, it is 
prominent within game-like environments, as shown by its relatively high frequency 
in the EcoMUVE data. As this area of research advances and suites of sensor-free 
affect detectors become available for more systems, delight will likely prove to be an 
important indicator of engagement. 

The resultant models presented here achieve an average performance of Kappa = 
0.25 and A’ = 0.61, an average Kappa higher than that seen in [26] and not far below 
the values seen for sensor-free affect detectors developed for intelligent tutoring 
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systems [cf. 6, 22]. While considerable room for improvement remains, it is worth 
noting that detectors of comparable goodness were recently developed for 
ASSISTments using BROMP observations and similar data mining techniques 
[CITE]. ASSISTments’ affect detectors have since been successful at predicting long-
term learning outcomes for middle-school students, including success on state 
standardized exams [22] and even which students will attend college several years 
after using a learning system [27].  

Even without further refinement, these detectors should be sufficient for the 
development of fail-soft interventions that can be implemented without interrupting 
the learning process and for discovery with models research, such as the approach 
used to make long-term predictions in ASSISTments. Further study of EcoMUVE log 
files using these detectors is also likely to provide insight into what aspects of the 
learning system are most boring, frustrating, or confusing, supporting the 
development of design changes to make EcoMUVE more engaging and effective.  
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